Preamble

The Decision Process for Stormwater Management in WA provides a decision framework for the planning and design of stormwater management systems. The methodology outlined in the decision process will result in minimising potential changes in the volume of surface water flows and peak flows which, if not managed, would lead to adverse impacts on water regime, water quality, habitat diversity and biodiversity in receiving water bodies resulting from land development (i.e. residential, rural-residential, commercial and industrial). The process also addresses the management of flood events for the protection of properties. The decision process sits within the objectives, principles and delivery approach outlined in the Stormwater Management Manual for Western Australia (DoE, 2004). This includes: minimising risk to public health and amenity; implementing systems that are economically viable in the long term; and ensuring that social, aesthetic and cultural values are maintained.

A significant stormwater management measure is to minimise the ‘effective imperviousness’ of a development area. Effective imperviousness is defined as the combined effect of the proportion of constructed impervious surfaces in the catchment, and the ‘connectivity’ of these impervious surfaces to receiving water bodies. The purpose of minimising effective imperviousness is to reduce the transportation of pollutants to receiving water bodies and to retain the post development hydrology as close as possible to the pre-development hydrology. This is achieved by ‘disconnecting’ constructed impervious areas from receiving water bodies and by reducing the amount of constructed impervious areas.

To retain the pre-development hydrology of a site, the order of management priorities is: the magnitude of peak flows; the volume of catchment run-off; and the seasonality of catchment run-off.

Rainfall, for the majority of events occurring each year, should be retained or detained on-site (i.e. as high in the catchment and as close to the source as possible, subject to adequate site conditions). Runoff from constructed impervious areas (e.g. roofs and paved areas) should be retained or detained through the use of soakwells, pervious paving, vegetated swales or gardens. For detention systems, the peak 1 year Average Recurrence Interval (ARI) discharge from constructed impervious areas should be attenuated to the pre-development discharge rate. Events larger than 1 year ARI can overflow ‘off-site’.

For larger rainfall events (i.e. greater than 1 year ARI events), runoff from constructed impervious areas should be retained or detained to the required design storm event in landscaped retention or detention areas in public open space or linear multiple use corridors. Any overflow of runoff towards waterways and wetlands should be by overland flow paths across vegetated surfaces. Further detention may be required to ensure that the pre-development hydrologic regime of the receiving water bodies is largely unaltered, particularly in relation to peak flow rates and, where practical, discharge volume.

1 Water bodies are defined as waterways, wetlands, coastal marine areas and groundwater aquifers.

2 Retention is defined as the process of preventing rainfall runoff from being discharged into receiving water bodies by holding it in a storage area. The water may then infiltrate into groundwater, evaporate or be removed by evapotranspiration of vegetation. Retention systems are designed to prevent off-site discharges of surface water runoff, up to the design ARI event.

3 Detention is defined as the process of reducing the rate of off-site stormwater discharge by temporarily holding rainfall runoff (up to the design ARI event) and then releasing it slowly, to reduce the impact on downstream water bodies and to attenuate urban runoff peaks for flood protection of downstream areas.

4 ARI is defined as the average, or expected, value of the periods between exceedances of a given rainfall total accumulated over a given duration. For further information, refer to Australian Rainfall & Runoff (IEA, 2001) and the Bureau of Meteorology website via <www.bom.gov.au/hydro/has/ari_aep.shtml>.
Urban pollutants, whether in particulate or soluble forms, are conveyed by stormwater almost every time a storm event occurs. Studies in urban areas have shown that there is no general trend of increased concentrations of contaminants such as nutrients and metals with increasing storm sizes. Figure 1 shows that most hydraulic structures can be expected to treat over 99% of the expected annual runoff volume when designed for a 1 year ARI peak discharge. Unlike flood mitigation measures, stormwater quality treatment devices do not need to be designed for rainfall events of high ARI to achieve high hydrologic effectiveness (i.e. the percentage of mean annual runoff volume subjected to treatment) and therefore a high level of beneficial environmental outcomes.

![Figure 1. Treatment efficiency of stormwater hydraulic structures for Perth, Western Australia (adapted from Wong, 1999)](image)

Stormwater management systems should be based on adequate field investigations and the conditions of the site. Prior to design, developers should consult with the Department of Environment, local government authority and other relevant stakeholders. For further information, refer to the Decision Process for Stormwater Management in WA flow chart.

References and further reading

